
~ Pergamon 

www.elsevier.com/locate/jappmathmech 

J. Appl. Maths Mechs, Vol. 63, No. 2, pp. 237-247, 1999 
© 1999 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 
PII: S 0 0 2 1 - 8 9 2 8 ( 9 9 ) 0 0 0 3 2 - 5  0021-8928/99/S----see front matter 

THE RELATION BETWEEN THE MECHANICS OF 
DIS SIPATIVE FINITE-DIMENSIONAL SYSTEMS WITH 

HEREDITY AND THE MECHANICS OF INFINITE- 
DIMENSIONAL HAMILTONIAN SYSTEMSt 

O. Yu.  D I N A R I Y E V  

Moscow 

(Received 24 June 1998) 

It is shown that  the dynamics of a non-linear multi-dimensional oscillator interacting with a field of harmonic oscillators, 
continuously distributed with respect to frequency, is governed by a non-linear integro-differential equation. The investigation 
centres on the possibility of an inverse transition from a non-linear oscillator with heredity to be embeddable in a larger Hamiltonian 
system is the usual condition that  the entropy production should not be negative. Existence and uniqueness theorems are proved 
and several a priori estimates are found for the solution. It is also proved that, subject to certain restrictions on the relaxation 
kernel, the solution converges to one of the critical points of the effective potential. © 1999 Elsevier Science Ltd. All rights reserved. 

It is usually assumed that the description of dissipative phenomena (such as friction, viscosity, relaxation 
etc.) lies beyond the scope of Hamiltonian mechanics. Indeed, Poincard's recurrence theorem [1] might 
seem to exclude the possibility of irreversible processes for Hamilton's equations. However, the validity 
of Poincar6's theorem is related in an essential way to the condition that the number of degrees of 
freedom be finite. If the system is infinite-dimensional, a trajectory in a general position no longer has 
to return to an arbitrarily small neighbourhood of the initial state. 

The idea of describing dissipative processes within the framework of Hamiltonian mechanics is 
.therefore as follows. We assume that the set of degrees of freedom of the system may be divided into 
two subsets, so that the phase space may be represented as a produce S t x $2, where S1 is a finite- 
dimensional set and $2 is infinite-dimensional. The initial conditions for the degrees of freedom in $2 
are specified. Solving the Hamilton's equations, one can eliminate the characteristics of the subsystem 
corresponding to $2, and obtain a single dynamical system of equations for the subsystem corresponding 
to S1. This last system of equations is non-local in time, that is, it involves heredity effects and may 
describe dissipative phenomena. This technique is well known for models with quadratic Hamiltonians 
which admit of exact solutions [2-4], that is, for linear equations. In what follows we will investigate 
whether dissipative processes can be described in Hamiltonian mechanics for the non-linear case. 

1. T H E  R E L A T I O N S H I P  B E T W E E N  L A G R A N G I A N  SYSTEMS AND 
SYSTEMS W I T H  H E R E D I T Y  

We will use the usual definition of a scalar product and norm in C N 

( z , z ' )  = E * " zi zi, I z I= (z,z 
i=1 

• Z=(Zi), z'=(z~), i=l  . . . . .  N 

The asterisk in the superscript position denotes the operation of complex conjugation, A ÷ is the adjoint 
matrix to A and f i g  is the convolution with respect to time of the time functions f = f ( t )  and g = g(t). 
For real matrices, of course, the conjugation operation is identical with ordina.ry transposition. The norm 
I • I in N induces a norm II • II, in the usual manner, for linear operators in C N. 

Consider a Lagrangian system with coordinates 

X = ( X i )  = ( x i ( t ) )  E R N, (P = ((Pi) = (tpi(/ , t .0)) E [~N 

i=1 ..... N, o ~ [ 0 ,  +oo) 
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and Lagrangian 

L = ½ - V(x) + '= to:  ))dto + 
20 

+~ (x, qto)dto+(f(t), x) (1.1) 
0 

The physical meaning of this system is that a selected N-dimensional non-linear oscillator x = x(t) 
is interacting with a field of N-dimensional harmonic oscillators tO = tO(t, to), which are continuously 
distributed with respect to the frequency to. Here  V = V(x) is the potential energy of the oscillator, 
f = ((~(t)) is the external force and q = q(co) is a real weighting matrix, not identically zero, characterizing 
the interaction. 

Throughout, we will assume that: (1) Ve C2(RN), (2) q e Ca[0, +co), (3) the matrix-valued function 
dq/dto = dq(to)/dto has a right derivative at co = 0 and 4) ~ ~.to-1 Tr(qq+)dto < +oo. The last condition 
implies that q(O) -- O. It is convenient to extend the definition of the matrix-valued function q = q(to) 
to negative values of  the argument: q(to) = q ( -o ) ,  to < O. 

We will denote the vector of first derivatives of the potential V = V(x) by VV and the matrix of second 
derivatives of V by (VVV). 

If the external forces are zero, the potential energy of the system is given by the expression 

1 7 to2(tO, tO)dto-7 (x, qtO)dto=V I +1 7 to2(tO-to-2q+x, tO-to-2q+x)dto 
U = V + 2 o  o 20  

VI=VI(x )=V(x ) - I  (x, yx), y = ~  to-2qq+dto 
0 

Consequently, a necessary and sufficient condition for the system to be energetically stable is that 
the function II1 - Vl(x) should have a lower bound. In what follows we will assume a stronger 
condition 

V~(x) ~ +~ as Ixl ~ +.~ (1.2) 

The Lagrange equations follow from (1.1) 

O2x+VV= f qtodto+f, t)t2tO+to2tO=q+x (1.3) 
0 

We will seek a solution of  system (1.3) when t/> 0 satisfying the initial conditions 

x(0) = x0, 0ix(0) = Y0 (1.4) 

~ 0 ,  co) = ~( to) ,  ~,tO(0, co) = q0Cto) (1.5) 

The second equation of (1.4) and conditions (1.5) imply the following expression for the oscillators 
of the field 

t 

tO(t, to)=to-lq(to)+ S sinto(t-fi)x(tl)d fi +Z(t, to) (1.6) 
0 

X( t, to) = tOo (to) cos tot + xl, o (to)to-J sin tot 

Substituting this expression into the first equation of (1.3), we obtain an integro-differential equation 

t 

O2x(t) + VV I (x(t)) + ~ K( t -  fi )Otx(fi )dfi = fl (t) (1.7) 
0 

where 

K(t) = ~ co-2q(to)q(to) + costotdto, t >I 0 (1.8) 
0 
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fl (t) = f ( t )  - K(t)x o +7 q(t°)X(t, o))dto (1.9) 
0 

It is convenient to complete the definition of the kernel for negative times: K(t) = 0, t < 0. 
Note that for slow processes Eq. (1.7) becomes the equation of forced oscillations of a multi- 

dimensional non-linear oscillator with friction 

02x + V V  I + 2Lc~,x = fl (t), ~L = 7 K(t)dt 
0 

Thus Eq. (1.7) is a generalization of the usual equation for a damped oscillator. We will show later 
that the solutions of Eq. (1.7) have many properties typical of ordinary damped oscillations. 

We recall that ifg = g(t) is a generalized function (or distribution) of moderate growth, then its Fourier 
transform is defined [5]; we will denote it by 

gF(~'2) = J e-if~ g(t)dt 

Consequently, the Fourier transform KF(£2) of the kernel is defined. By the Paley-Wiener theorem, 
it is analytic in the lower complex half-plane. Using (1.8), we find that 

1+** Kp(~) = ~ J ~-2q(to)q(to)+(~-o~)-tdo), Imf2 < 0 (1.10) 
zi ._,. 

Given the usual assumptions concerning the function q = q(to), when taking limits with respect to 
real values of f~ in this expression, we can apply the Sokhotskii-Plemelj formula [6] 

Kr(I2) = 2i "p" ~ t°-2q(c°)q(t°)+(f2- t°)-t de0 +--~ ~2-2q(~)q+(£2) (1.11) 
_,0 2 

At the point f l  = 0 the right-hand side of (1.11) is defined by continuity. 
We have shown that, by reduction with respect to some of the degrees of freedom, the Lagrangian 

system (1.1) may be reduced to the form of a non-linear oscillator with heredity (1.7). We will now 
consider the converse process: given an oscillator with heredity (1.7), we will try to embed it in some 
Lagrangian system with a large set of degrees of freedom. 

L e m m a  1. Let K -- K(t) = K(t) ÷ be a real matrix-valued function, continuous on the half-line t /> 0 
and vanishing at t<  0. Suppose moreover that the integrals 

+.o  -coo 

k = ~ tl K(t)II at < +,,o, j It Ke(~))II d n  < +oo (1.12) 
0 - - ~  

are convergent and that for real values of f~ 

KF(f~) + K~(K~) + ~> 0 (1.13) 

Assume, furthermore, that in some real neighbourhood of ~ = 0 

K F ( ~  ) = a 0 + aj Ita I +o(Xq) 

for some real symmetric matrices a0 and al. 
Then a function q = q(0)), exists connected with the function K --- K(t) by formula (1.11), and satisfying 

all the assumptions adopted for this function. 

Proof. Following (1.11), we will seek a function q = q(c0) satisfying the equation 

q(fl)q+ (t)) = g-lf~-2 (KF(f~) + KF(~) +) 

It follows from the assumptions of the lemma that this equation defines a (not necessarily unique) function 
q = q(to) which satisfies all the required conditions. Equation (1.11) follows from the Sokhotskii-Plemelj formula. 
This completes the proof. 

Remark 1. The main condition (1.13) for an oscillator with heredity to be embeddable in a broader Hamiltonian 
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system corresponds to the requirement that the second law of thermodynamics should hold for systems with delay. 
Indeed, inequality (1.13) is equivalent to the inequality 

-Coo +oo 

dtl ~ dt2(Y(tl), K(tl-t2)Y(t2))>~O 

for arbitrary rapidly decreasing real vector-valued functions y = y(t). This inequality corresponds precisely to the 
condition that the entropy production be non-negative [7, 8] in the mechanics of materials with a memory. The 
consistency of the model with the second law of thermodynamics automatically implies that it is embeddable in 
some broader Hamiltonian system. 

We will continue with a few examples of the application of Eq. (1.7) in mechanics. 

Example 1. Small oscillations of a massive slab on a layer of compressible visco-elastic liquid. Suppose a weightless 
layer of visco-elastic compressible liquid lies between a fixed base and a flat slab of mass M. The liquid is assumed 
to satisfy rheological relations in the form 

i" 2 
Pij =-PSij +[ Kv --~ Ks )*ekiSij + 2Ks *eij (1.14) 

where eli is the tensor of deformation rates, p = p(p) is the hydrostatic pressure as a function of the density p, and 
Kv = Kv(t) and Ks = Ks(t) are the relaxation kernels for bulk and shear deformations, respectively. Let x = x(t) 
be the variable thickness of the layer, let x0 and P0 be the thickness and density of the layer at time zero, and let 
f = f(t) be an external force applied to the slab (over the whole of the slab). The dynamics of the system are described 
by the equation 

If Ix -x0 I/x0 '~ 1, one can linearize the relaxation term and obtain an equation of the form (1.7). When this is 
done, the pressure may depend non-linearly on the layer thickness. The conditions Re KvF ~> 0, Re KsF >t 0 are 
the usual dissipativeness conditions for visco-elastic materials [9]. 

Example 2. The angular vibration of a shaft. Suppose a massive shaft of radius R1 can rotate about its own axis; 
let ~0 = ¢p(t) denote the angle of rotation. Assume that the shaft is in contact with a visco-elastic lubricant filling 
the region R1 <~ r <~ R2(RI < R2), and that the outer boundary of the flow region r = R2 is fixed. Assuming that 
Couette flow occurs for the liquid with rheoiogy (1.14), we obtain the equation 

j[}2q} = _2/tR3L(R2 _ R1 )-I KS.  Dt~p + F(tp) + f(t)  (1.15) 

where J is the moment of inertia of the shaft, f(t) is the torque of the external forces, F(tp) is a rotating torque set 
up by external devices and L is the shaft length. Equation (1.15) describes, for example, the operation of a rotation 
viscometer. 

Example 3. The oscillations of a particle in a medium with a microstructure. In a medium with a microstructure, 
long waves may generate rotational vibration of micro-particles [10] 

Jc32tp + VV(tp) + ~AO = f(t)  (1.16) 

where ¢p = (¢Pi) is the micro-rotation vector, J is the density of the moment of inertia, V = V(tp) is the elastic potential, 
is the coefficient of rotational viscosity and f(t) is an external torque set up by a macroscopic elastic wave. To  

take the effects of heredity into account, the coefficient ~. in Eq. (1.16) must be replaced by a convolution operator 
with a kernel [11] 

jD2~p + VV(tp) + K * ~ttp = f(t)  

A dissipativeness condition of type (1.13) is rigorously justified for this case in [11]. 

T h r o u g h o u t  the remainder  o f  this paper  we will assume that the condit ions o f  L e m m a  I are satisfied. 
In  addition, we will replace condi t ion (1.13) by the s t ronger  inequality 

Kt:(~  ) + KF(f~) + >I p(f2) id a N 

where  p ( ~ )  is a cont inuous  positive function. 

(1.17) 
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2. E X I S T E N C E  AND U N I Q U E N E S S  T H E O R E M S  
AND A P R I O R I  E S T I M A T E S  

We now prove a local existence and uniqueness theorem for problem (1.4), (1.7). To do this, we will 
use a method which is a simple extension of the Picard-Lindel6f method in the theory of ordinary 
differential equations [12]. 

Put 

= , Z 0  ---- y = y( t )  = 3ix(t), z Y Y0 

t ' )  I l z l l = m a × ( I x l ,  lyl), ~ (z )=  _Vvl(x ) 

Then problem (1.4), (1.7) may be rewritten as a first-order iritegro-differential equation 

~,z = w, z(0) = Zo 
t 

w(t)  = tlJ(z(t)) + ~ ~P(t - t I )z(t l)dt t + x(t) 
0 

or an integral equation 

t 

z( t)  = Zo + ~ w(t l )dt t  (2.1) 
0 

T h e o r e m  1. Let the function fa = f l ( t )  be Lebesgue-integrable and bounded in the interval [0, To]. 
For any positive number a, we define 

b I =  max (IVVl(x)l), b = ( b o + b  l + ( l l z o l l + a ) k )  
I x - x o l ~ a  

b0 = sup0 < t < 7"0 (Ifl(t)  I) (the quantity k is defined by the first relation in (1.12)). 
Then a unique solution of problem (2.1) exists, in the class of continuous functions, in the interval 

[0, T1], where 7"1 = min (To, ab- l ) .  

P r o o f  Ex is tence .  We will construct a solution for 0 ~< t ~< T1 by successive approximations 

l 

Zo( t )=Zo,  Z , , ( t ) = Z o + ~  w,,(t l)dtl ,  n > 0  (2.2) 
0 

t 

w n (t) = O(Z.-I (t)) + ~ W( t  - t I )Zn-I (tl)dtl + ×(t) 
0 

It can be proved by induction that 

II z , ( t ) -  Zo II ~< a (2.3) 

Indeed, suppose this inequality is true for n = k I> 0. 
Direct estimates then yield the inequality ] I wk+a(t) I ] ~< b; using this inequality and the fact that t 

<~ ab  -1 we deduce (2.3) for n = k + 1 from (2.2). 
Now let 

c = max (11VVV~ (x) II) 
Ix--.r | l  I<~a 

It can be proved by induction that 

II zn (t)- Zn-! (t)  I1~ < b(c + k)  n-t t n I nt (2.4) 

Therefore, the sequence 
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z,,(t)=Zo + ~ (Zk-Zk-t) 
k = l  

converges uniformly to some continuous function z = z(t) .  Hence, by virtue of our assumptions, the 
sequence of functions wn = wn(t) converges uniformly to the function 

t 

• (Z(t)) + ~ ul(t - t I)z(t! )dr I + x( t )  
0 

Hence, by the definition of the sequence z~(t), it follows that z = z( t )  is a solution of problem (2.1). 

Uniqueness. Let z° = zo(t) be some solution of problem (2.1) in the interval [0, T1]. One proves by 
induction the inequality obtained from (2.4) when zn_l(t) is replaced by z . ( t ) .  

Hence it follows that z( t )  = z . ( t ) .  

Remark 2. In what follows, a solution of  problem (1.4), (1.7) will always be understood in the sense of  Theorem 1 
1. Generally speaking, Theorem 1 guarantees the local existence and uniqueness of  a C solution of  problem (1.4), 
(1.7). However, if the function ]'1 = fl(t) is piecewise continuous, then the function y = y(t) = O~x(t) is piecewise 
differentiable. 

We will now consider the existence and uniqueness of a solution in the entire half-line t ~> 0. The 
usual way to obtain a global solution is by successive continuation of the solution using the local existence 
theorem. This method, however, can only be used when one has a priori bounds on the solution under 
construction. We will find such bounds. 

Note that when there are no external forces the Lagrangian system (1.1) has an energy integral 
(Hamiltonian) 

I + V(x)+IT ((W,W)+co2(lp, ip))dco-+*f (x, qtp)dco (2.5) 
H = ~ ( y , y )  2 o o 

where ¥ = 0tcP. Let the function fl  = f l ( t )  be the Lebesque-integrable in the interval [0, 7] and suppose 
that a solution of problem (1.7) exists in that interval. Defining fl  = f l ( t )  as zero outside the interval 
and set t ingf  = f(t) = 0, we can evaluate the functions ~0 = tP0(co), ¥0 = ¥0(co) from (1.9) (e.g. by using 
inverse Fourier transforms). However, substitution of x0, Y0, %(co), ¥0(co) into formula (2.5) yields 
integrals with respect to co that may be divergent. Nevertheless, the integrals in another expression, 
which is also constant (more precisely, vanishes identically) by virtue of the Hamilton equations, are 
convergent 

_} I , 
AH -- (y(t), y(t))  + V I (x( t ) )  - -~ (Y0, Yo) - VI (Xo) + ~ - I (fl  (tl), Y(tt ))dt, t ~ [0, 7"] 

0 

t t 

~( t )  = I dtl I (Y(tt),  K(t~ - t 2)y(t 2))dt2 
0 0 

where we have used (1.6) and (1.9). 
Note that the relation ~ = 0 may be obtained by evaluating the scalar product of Eq. (1.7) and 

y -- 0K and integrating from 0 to t. The more complicated derivation presented above was intended to 
demonstrate its meaning as an energy conservation law in the broader Hamiltonian system. 

L e m m a  2. Let f l  = f l ( t )  be a Lebesgue-integrable vector-valued function in the interval [0, 7] and 
let x = x( t )  be a solution of problem (1.4), (1.7) in that interval. 

Then the following inequality holds for 0 ~ t ~ T 

(y(t), y(t))  + V I (x(t))  + Ct(t) ~ A 0 + "C 2 + A ~  

A o = V l ( x o ) + l ( y o , Y o ) ,  AI Ao ~ i n f V  I 

t 

x = J I A (t) L dtl 
0 
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Proof. It follows from the relation AH = 0 that 

l (y(t),y(t)) + (x(t))+ o((t) <~ +Z(t) Vl Ao (2.6) 

t 

Z(t)  = ~ I J] (t I ) II y(t I ) I dt I 
o 

By the restrictions imposed on the kernel, ~t I> 0. Hence, and by inequality (2.6), we have the estimate 

Applying Gronwall's Lemma [12], we obtain 

l ( o x Z )  2 ~< A 1 + Z 

,~2 I/_ 
Z ~< + A(Z't 

Now, using this inequality, one can estimate the right-hand side of (2.6) and obtain the required assertion. 

Having an a priori estimate for the solution, one can now prove a global existence and uniqueness 
theorem. 

Theorem 2. Let  fl  = f l( t)  be a locally Lebesgue-integrable and locally bounded function for t t> 0. 
Then problem (1.5), (1.8) has a unique solution over the half-line t 1> 0. 

Proof. Applying Theorem 1 to the sequence of problems 

t 
~)tZ(t) = ~(Z(t))  + S W(t -- t I )z(t I )dt I + x 1 (t) 

tO 

to 
x! (t) = x(t)  + S ~F(t - t I )Z(t I )dt I 

0 

one can achieve local continuation of  the solution. It must be shown that the procedure indeed yields 
a solution at all times. 

Suppose the solution has been constructed for an interval 0 ~< t ~< T. It follows from Lemma 2 and 
condition (1.2) that, for some positive numberA,  the inequality I z(t) I <~ A holds throughout this time 
interval. 

Define 

b =  max IVV(x )  I, b l = A k +  sup I) ' i ( t ) l  
Ixl~A+l O~t~2T 

b=bo+bl +(A + 1)(k+ I) 

It follows from Theorem 1 that for all points of the interval 0 ~< t <~ T one can continue the solution 
forward over an interval of length At = min (T, b-l). Hence it follows that the solution may be continued 
to the entire half-line t ~> O. 

Besides a priori estimates for the solution of Eq. (1.7), which are related to the energy conservation 
law for the Lagrangian system (1.1), one can derive a priori integral estimates for the time derivatives. 
These estimates are needed to analyse dissipative effects in Eq. (1.8). 

L e m m a  3. Let  f l  = fl(t)  be a piecewise continuous, Lebesgue-integrable and bounded vector-valued 
function in the half-line t />  0. Then, for the solution x = x(t) of problem (1.4), (1.7), the following 
integrals are convergent 

It)tx(t)l  2 d t< +o., 7 I/)2x( t)12 dt< +*~ (2.7) 
0 0 

Proof. We c o m p l e t e  the  def in i t ion  off1 = f l ( t )  by s e t t i n g f l ( t  ) = 0 for  t < 0. Fix  some  pos i t ive  n u m b e r  T and put  

u 0 = ~ x ( 0 ) ,  x I = x ( T ) ,  Yl =~tx (T) ,  Vl = 3 ~ x ( T )  
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We choose some non-decreasing function Ix = Ix(t) of class C**(R) satisfying the additional conditions 

= ~'0, t < 0 
Ix(t) 

L 1, t > l  

We define an auxiliary function 

I ( x + yo t +u o t212)g( t  + 1), t < 0 

Ur(t) = I x ( t ) ,  0 <<. t <~ T 

[(Xl + Yl (t - T) +u 1 (t - T) 2 / 2)IX(T- t + 1), t > T 

It is obvious that this function is of class CI(R) and vanishes outside the interval [-1, T + 1]. In addition, the 
derivative of the function vr  = vr( t )  = Otur(t) is piecewise differentiable. 

The function ur  = ur( t )  satisfies the integro-differential equation 

t 

32uT(t)  + V V I (u r (t)) + I K ( t -  t ! )OtUT (t I )tit I = :T (t) + f l  (t) (2.8) 
- I  

An expression for the piecewise continuous functionfr = f r ( t )  may be calculated from the expression for u r  = ur(t)  
and from Eqs (1.7) and (2.8). In particular, for 0 ~< t ~< Twe have 

0 
f T ( t )  = ~ K ( t -  t I)OtuT(t 1)dt I (2.9) 

-I 

By Lemma 2, the solution x = x( t )  of Eq. (1.7) and the time derivative Ot x = 0t x( t )  are bounded for t >t 0 

Ix(t)l~ < C 0, IOtx ( t ) l~  C 1 (2.10) 

Here and below, C, denotes positive numbers independent of the parameter T. Using (1.7) and (2.10), we obtain 
the estimate 

I ~2x(t)I<~ C 2 (2.11) 

Relations (2.9)-(2.11) yield the following estimate 

T + l  

I I f r ( t ) l d t < C 3  (2.12) 
- l  

We define a linear operator F acting from the space H I(R) into the space H -1 (R) (for the definition of the Hardy 
spaces H~(R), see [5]) 

¢ 

(Fu)(t) = -~2v  (t) - V V V  1 (u T (t))u (t) - I K( t  - t I )3to (t 1 )dt I 

It follows from (2.8) that the function vr  = vr( t )  satisfies the equation 

(Fv r)(t) = -Or ( f ( t )  + fT( t ) )  

Relations (2.10)-(2.12), as well as the fact that f(t) is integrable, imply the inequality 

T + I  

J (OtUr( t ) ,Cf ( t )+frCt ) ) )  dt < C 4 
- I  

From (2.13) and (2.14) we obtain 

+** 2__~T 2 12 C3 > I U r ( t ) ( F u r ) ( O d t  = ( ~  l u r ~ ( ~ )  - i ~ ( u r F ( ~ ) ,  K~(~)UrP(f~))d~- 

(2.13) 

(2.14) 

+oo 

-~ (or ( t ) ,  V V V l ( u r ( t ) ) u r ( t ) ) d t  
w o o  

We have the inequalities 

(2.15) 

II VVV I (ur ( t ) )  I1< C 5, II K F ( ~  ) I1< C 6 
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which may be substituted into (2.15), to obtain 

C4 >(2~)-I ~ ( ~ 2 _ C  5 _ C  6 I~I)IUTF(~)I 2 d~ (2.16) 

We choose some positive quantity h20 so that for I ~ I ~> f~o 

(~2_C  s _ C  6 I~I)>C 7 >0 

It then follows from (2.6) that 

2nC4>C 7 ~ IvTF(~'))I2 d~')-(C5+C61~O I) ~ IOTF(~)I2 d~ (2.17) 
IC21>~ 0 If21<C2 o 

We now apply Lemma 2 to Eq. (2.8). As a consequence of this we obtain the inequality 

T+I T+I 
dtl I dt2(UT(tl), K(tl-t2)VT(t2))<~C8 

- I  - l  

Hence, taking (1.7) into consideration, we obtain the limit 

4 ~  lUTF(~)I 2 dI2<'-~C 8, ~= rain (p(fl))>0 
I121<~1 ~ I f l l ~ 0  

Combining this limit with (2.17), we obtain 
+.o 

I lurF(fl) 12 dfl < C 9 (2.18) 

Returning again to inequality (2.17) and using (2.18), we obtain 

I ~2 lUTF(~ ) 12 df~ < Cto (2.19) 

It now follows from (2.18) and (2.19) that 

T I I I~,x(012 dt<~--~-c9 
o 
T 
I 1o,2x(t) 12 d t<~q0  
0 

Since the right-hand sides of these inequalities are independent of T, this proves that the integrals (2.7) are 
convergent. 

3. T H E  A S Y M P T O T I C  B E H A V I O U R  OF S O L U T I O N S  F O R L O N G  T I M E S  

We will show that Eq. (1.7) describes effects typical of dissipative systems, such as damped oscillations 
These effects are valid regardless of the previously proved equivalence of processes (1.17) to certain 
processes in an infinite-dimensional Hamiltonian system when there are no external forces. Thus, the 
results of this section constitute a counter-example to the problem of recurrence in infinite-dimensional 
Hamiltonian mechanics. 

Theorem 3. Let  f l  = fl(t)  be a piecewise continuous function, bounded and Lebesgue-integrable for 
t ~> 0. Assume that the potential 1/1 = Vl(x) has a finite set of  critical points. Then the solution x = x(t) 
of problem (1.4), (1.7) converges to one of the critical points of the potential. 

Proof. By Lemma 2, the solution x = x(t) and its derivative are bounded at all times 

Ix ( t ) l~  < A  0, IO,x(t)l~ <Aj  

We rewrite Eq. (1.7) in the equivalent form 
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3~x(t )  = - V V  I (x( t ) )  + x . ( t )  

×, (t) = ×! (t) + ~2 (t) 

t 

×1 (t) = -~  K(t  - to)~,X(to)dt  o 
0 

×2(t) =)](t)  

(3.1) 

The function K2(t ) is square-integrable, since it is integrable and bounded. The function Kl(t ) is also 
square-integrable, as a convolution of functions with the analogous property. 

The proof will be carried out by reduct io  ad  absurdum.  
Suppose a positive constant Co exists such that there is an infinite sequence of times tk at which 
(a) tk+ 1 > t k + 1 
(b) I VVl (xk )  I >t Co, Xk = X(tk). 
We choose a sufficiently small positive number e < 1 so that 

C o - a 2 a l e > ~  C I.>O, a 2 = max 1177Vl(x)ll 
• Ixl~A 0 

Then I V V l ( x ( t ) )  I >~ C1 for t k <- t <~ t k + E Hence, by Eq. (3.1), we obtain the limit 

lk +g 1 tk +~ 
1O2x(t)12 d t ~ - C 2 1 e -  S I×*( t)12 dt 

2 tk t k 

Since the integral 

I ×,(t) 12 dt 
o 

is convergent, so is the integral 

I ~t2x(t)12 at 
0 

This in turn contradicts the results of Lemma 3. 
If  the conditions of Theorem 3 are satisfied, the solution converges to some critical point x. of the 

potential 1/'1(x). Suppose this critical point is non-degenerate. Applying, if necessary, a translation along 
the vector x,, we may assume without loss of generality that x. = 0. At sufficiently large time values, 
one can linearize problem (1.4), (1.7) (if necessary applying a time shift). The result is a linear equation 

! 

O2x(t) + Lx( t )  + ~ K( t  - t I )O,x(t  I )dq = fl (t) (3.2) 
0 

where L = VVV1(0). This equation may be solved by the method of Fourier-Laplace transforms. 
Changing to Fourier transforms and using condition (1.4), we reduce Eq. (3.2) to the form 

T(~)xF(~) = fIP(f2) + Yo + iD-xo 

T(f~)  = _f~2 + L + i D ~ F ( f ~  ) 
The matrix-valued function T(f~) is non-singular on the entire real axis. Indeed, T(0) = L. If [2 ~ 0, 

it follows from inequality (1.17) that 

i ~ - I T ( ~ )  + - iI'Ut T(f~) t> p(~)idnN 

Hence, one can write the solution for t />  0 as a Fourier integral, understood in the sense of the 
principal value 

x(t) = ~ [ e x p( ig'~t )x  F ( g~ )d.Q (3.3) 
Z ~  

XF(~) = T -l (~)(fljr (~) + YO + iD'Xo) 
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The integration in (3.3) is performed along the real axis, since the contribution from the poles in the 
lower complex half-plane vanishes due to our assumptions. 

Generally speaking, formula (3.3) says little about the rate at which the solution tends to zero. 
However, subject to certain additional assumptions, one can derive fairly strong estimates. Thus, suppose 
that for some natural number n I> 1 the integrals 

7 tn IIK(t)lldt<+,,o, 7 tn I f l ( t ) ld t<+~" 
o o 

are convergent. Then one can integrate by parts in (3.3) for t > 0 

l ( i ]n] e x p ( i ~ t ) - ~ ,  xt:(I'~)d~ x(t) = ~ ~,t) 

to obtain the asymptotic estimate 

I x(t) I= O(t-") 

4. C O N C L U S I O N  

Thus, systems of the type of a multi-dimensional non-linear oscillator with relaxation fall into the 
category of infinite-dimensional Hamiltonian systems. At the same time, these systems exhibit dissipative 
effects typical of ordinary mechanical systems with friction. It seems that this result may serve as a bridge 
between Hamiltonian mechanics and the ordinary mechanics of dissipative systems, since all time-local 
dissipative systems in the real world are limiting cases of systems with relaxation. 

The assumption adopted in this paper that a system with heredity has only a finite number of degrees 
of freedom is not essential. The results as a whole extend to infinite-dimensional systems with heredity 
(e.g. visco-elastic continuous media), but such cases require more complicated mathematical treatment. 
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